Adams inequality with exact growth in the hyperbolic space ℍ4 and Lions lemma

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Moser-Trudinger inequality with the exact growth condition on hyperbolic space

In this paper, we are concerned with a singular version of the Moser-Trudinger inequality with the exact growth condition in the n-dimension hyperbolic space [Formula: see text]. Our result is a natural extension of the work of Lu and Tang in (J. Geom. Anal. 26:837-857, 2016).

متن کامل

Shimizu’s lemma for quaternionic hyperbolic space

We prove a version of Shimizu’s lemma for quaternionic hyperbolic space. Namely, consider groups of quaternionic hyperbolic isometries containing a parabolic map fixing infinity. We show that any element of such a group not fixing infinity has an isometric sphere whose radius is bounded by a function of the parabolic translation length at its centre. Mathematics Subject Classifications (2000): ...

متن کامل

Jørgensen’s inequality for quaternionic hyperbolic n-space

Jørgensen’s inequality gives a necessary condition for a non-elementary two generator group of isometries of real hyperbolic 2-space to be discrete. We give analogues of Jørgensen’s inequality for non-elementary groups of isometries of quaternionic hyperbolic n-space generated by two elements, one of which is loxodromic. Mathematics Subject Classifications (2000): 20H10, 22E40, 57S30.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Contemporary Mathematics

سال: 2018

ISSN: 0219-1997,1793-6683

DOI: 10.1142/s0219199717500663